# A Voltage Interpolation Method in Inverter Modeling for Fast Electromagnetic Transient Simulations

Shuntaro Horiuchi<sup>1</sup>, Kenichiro Sano<sup>1</sup>, Taku Noda<sup>2</sup>

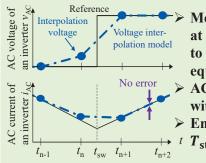
<sup>1</sup>Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Tokyo, Japan <sup>2</sup>Energy Innovation Center, Central Research Institute of Electric Power Industry, Yokosuka, Japan



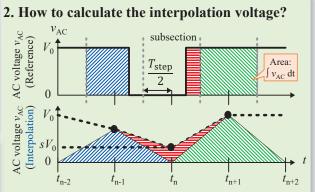


Time [ms]

### Motivation

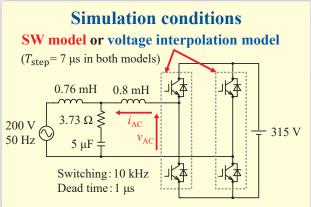

- Target: Harmonic analyses of the power system with grid-connected inverters
- Problem: Large computation time in the electromagnetic transient (EMT) simulations
- > <u>Purpose</u>: Enabling fast EMT simulations with accurate harmonic components

#### Approach


- 1. Concept of the voltage interpolation method
- 1.1 Conventional SW model



**1.2 Proposed voltage interpolation model** 




 Modified AC voltage at switching instants to make " ∫ v<sub>AC</sub> dt " be equal to the reference
AC current coincides with the reference
Enabling to enlarge t T<sub>step</sub> without error



- > The reference is divided into subsections in each  $t_n \pm \frac{T_{step}}{2}$
- The interpolation voltage sV<sub>0</sub> is given to form the same area as the subsection
- > Such  $sV_0$  can be calculated as follows:  $sV_0 = V_0 \left(\frac{1}{2} + \frac{v^* - v_{carrier}}{kT_{sten}}\right),$

where all parameters are available in the simulation (voltage reference  $v^*$ , carrier voltage  $v_{\text{carrier}}$ , carrier inclination k).



#### Simulation results 1. The simulation results of $i_{AC}$ and $v_{AC}$ -Reference(SW model with Ts=0.1 µs) AC[A] -×-SW model with Ts=7 µs $\bigcirc$ Voltage interpolation model with Ts=7 $\mu$ s Reference 15 20 25 30 AC[A] 10 15 25 20 30 35 AC[A] Voltage 15 22.2 25 30 223 22.4 20 35

- > The voltage interpolation model can accurately simulate the AC current even with a large  $T_{step}$ .
- 2. Comparison of computation times

| Ν | Iodel (Simulation time step)                           | Computation time |
|---|--------------------------------------------------------|------------------|
| S | W model ( $T_{\text{step}}=0.1 \ \mu \text{s}$ )       | 100 %            |
| V | Voltage interpolation model ( $T_{step} = 7 \ \mu s$ ) | 6.5 %            |

The voltage interpolation model can reduce the computation time to 1/15 for achieving the same accuracy as the SW model.

## Conclusions

- Proposal of a modeling method of the inverter for fast EMT simulations including harmonic components.
- Simulation results verified that the proposed method can reduce the computation time to 1/15 for achieving the same accuracy as the conventional SW model.